description

This series of fixed-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5 A of output current. The internal current-limiting and thermal-shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents, and also can be used as the power-pass element in precision regulators.

The μA7800C series is characterized for operation over the virtual junction temperature range of 0°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
The KTE package is only available taped and reeled. Add the suffix R to the device type (e.g., μA7805CKTER). Chip forms are tested at 25°C.
<table>
<thead>
<tr>
<th>absolute maximum ratings over operating temperature ranges (unless otherwise noted)†</th>
<th>µA78xx</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage, V_I</td>
<td>µA7824C</td>
<td>40 V</td>
</tr>
<tr>
<td>All others</td>
<td>35 V</td>
<td></td>
</tr>
<tr>
<td>Virtual junction temperature range, T_J</td>
<td>0 to 150 °C</td>
<td></td>
</tr>
<tr>
<td>Package thermal impedance, θ_{JA} (see Notes 1 and 2)</td>
<td>KC package</td>
<td>22 °C</td>
</tr>
<tr>
<td>KTE package</td>
<td>23 °C</td>
<td></td>
</tr>
<tr>
<td>Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds</td>
<td>260 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range, T_{stg}</td>
<td>-65 to 150 °C</td>
<td></td>
</tr>
</tbody>
</table>

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Maximum power dissipation is a function of T_J (max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(\text{max}) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

<table>
<thead>
<tr>
<th>recommended operating conditions</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage, V_I</td>
<td>µA7805C</td>
<td>7</td>
<td>25 V</td>
</tr>
<tr>
<td>µA7806C</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>µA7808C</td>
<td>10.5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>µA7810C</td>
<td>12.5</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>µA7812C</td>
<td>14.5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>µA7815C</td>
<td>17.5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>µA7818C</td>
<td>21</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>µA7824C</td>
<td>27</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Output current, I_O</td>
<td>1.5 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating virtual junction temperature, T_J</td>
<td>µA7800C series</td>
<td>0</td>
<td>125 °C</td>
</tr>
</tbody>
</table>
electrical characteristics at specified virtual junction temperature, \(V_I = 10 \, V \), \(I_O = 500 \, mA \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(T_J^\dagger)</th>
<th>(\mu A7805C)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
</tr>
<tr>
<td>Output voltage</td>
<td>(I_O = 5 , mA) to 1 A, (V_I = 7 , V) to 20 , V, (P_D \leq 15 , W)</td>
<td>25°C</td>
<td>4.8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0°C to 125°C</td>
<td>4.75</td>
<td>5.25</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>(V_I = 7 , V) to 25 , V</td>
<td>25°C</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(V_I = 8 , V) to 12 , V</td>
<td>25°C</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>(V_I = 8 , V) to 18 , V, (f = 120 , Hz)</td>
<td>0°C to 125°C</td>
<td>62</td>
<td>78</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>(I_O = 5 , mA) to 1.5 , A</td>
<td>25°C</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(I_O = 250 , mA) to 750 , mA</td>
<td>25°C</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Output resistance</td>
<td>(f = 1 , kHz)</td>
<td>0°C to 125°C</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>(I_O = 5 , mA)</td>
<td>0°C to 125°C</td>
<td>−1.1</td>
<td></td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>(f = 10 , Hz) to 100 , kHz</td>
<td>25°C</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>(I_O = 1 , A)</td>
<td>25°C</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>25°C</td>
<td>4.2</td>
<td>8</td>
</tr>
<tr>
<td>Bias current change</td>
<td>(V_I = 7 , V) to 25 , V</td>
<td>0°C to 125°C</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_O = 5 , mA) to 1 , A</td>
<td>0°C to 125°C</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>25°C</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>25°C</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, \(V_I = 11 \, V \), \(I_O = 500 \, mA \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(T_J^\dagger)</th>
<th>(\mu A7806C)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
</tr>
<tr>
<td>Output voltage</td>
<td>(I_O = 5 , mA) to 1 A, (V_I = 8 , V) to 21 V, (P_D \leq 15 , W)</td>
<td>25°C</td>
<td>5.75</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0°C to 125°C</td>
<td>5.7</td>
<td>6.3</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>(V_I = 8 , V) to 25 , V</td>
<td>25°C</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>(V_I = 9 , V) to 13 , V</td>
<td>25°C</td>
<td>1.5</td>
<td>60</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>(V_I = 9 , V) to 19 , V, (f = 120 , Hz)</td>
<td>0°C to 125°C</td>
<td>59</td>
<td>75</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>(I_O = 5 , mA) to 1.5 , A</td>
<td>25°C</td>
<td>14</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>(I_O = 250 , mA) to 750 , mA</td>
<td>25°C</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Output resistance</td>
<td>(f = 1 , kHz)</td>
<td>0°C to 125°C</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>(I_O = 5 , mA)</td>
<td>0°C to 125°C</td>
<td>−0.8</td>
<td></td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>(f = 10 , Hz) to 100 , kHz</td>
<td>25°C</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>(I_O = 1 , A)</td>
<td>25°C</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>25°C</td>
<td>4.3</td>
<td>8</td>
</tr>
<tr>
<td>Bias current change</td>
<td>(V_I = 8 , V) to 25 , V</td>
<td>0°C to 125°C</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_O = 5 , mA) to 1 , A</td>
<td>0°C to 125°C</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>25°C</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>25°C</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.
electrical characteristics at specified virtual junction temperature, \(V_I = 14 \text{ V}, I_O = 500 \text{ mA} \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(T_J \uparrow)</th>
<th>(\mu A7808C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I_O = 5 \text{ mA to 1 A}, V_I = 10.5 \text{ V to 23 V}, PD \leq 15 \text{ W})</td>
<td>25(^\circ)C</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td>0(^\circ)C to 125(^\circ)C</td>
<td>7.7</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td></td>
<td>25(^\circ)C</td>
<td>7.6</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td></td>
<td>25(^\circ)C</td>
<td>6</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td></td>
<td>25(^\circ)C</td>
<td>2</td>
</tr>
<tr>
<td>Output resistance</td>
<td></td>
<td>0(^\circ)C to 125(^\circ)C</td>
<td>55</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td></td>
<td>25(^\circ)C</td>
<td>12</td>
</tr>
<tr>
<td>Output noise voltage</td>
<td></td>
<td>0(^\circ)C to 125(^\circ)C</td>
<td>4</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td></td>
<td>25(^\circ)C</td>
<td>8.15</td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>25(^\circ)C</td>
<td>6.17</td>
</tr>
<tr>
<td>Bias current change</td>
<td></td>
<td>25(^\circ)C</td>
<td>2</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>90(^\circ)C to 125(^\circ)C</td>
<td>1</td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>25(^\circ)C</td>
<td>450</td>
</tr>
<tr>
<td>Overflow resistance</td>
<td></td>
<td>25(^\circ)C</td>
<td>2.2</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td></td>
<td>25(^\circ)C</td>
<td>12</td>
</tr>
<tr>
<td>Output noise voltage</td>
<td></td>
<td>0(^\circ)C to 125(^\circ)C</td>
<td>4</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td></td>
<td>25(^\circ)C</td>
<td>8.15</td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>25(^\circ)C</td>
<td>6.17</td>
</tr>
<tr>
<td>Bias current change</td>
<td></td>
<td>25(^\circ)C</td>
<td>2</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>90(^\circ)C to 125(^\circ)C</td>
<td>1</td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>25(^\circ)C</td>
<td>450</td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-\(\mu \)F capacitor across the input and a 0.1-\(\mu \)F capacitor across the output.
electrical characteristics at specified virtual junction temperature, \(V_I = 17 \, V, I_O = 500 \, mA \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(T_J \uparrow)</th>
<th>(\mu A7810C)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>(I_O = 5 , mA) to (1 , A,) (V_I = 12.5 , V) to (25 , V,) (P_D \leq 15 , W)</td>
<td>(25^\circ C)</td>
<td>9.6</td>
<td>10.4</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>(V_I = 12.5 , V) to (28 , V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_I = 14 , V) to (20 , V)</td>
<td>(25^\circ C)</td>
<td>7</td>
<td>200</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>(V_I = 13 , V) to (23 , V,) (f = 120 , Hz)</td>
<td>(0^\circ C) to (125^\circ C)</td>
<td>55</td>
<td>71</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>(I_O = 5 , mA) to (1.5 , A)</td>
<td>(25^\circ C)</td>
<td>12</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>(I_O = 250 , mA) to (750 , mA)</td>
<td></td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>Output resistance</td>
<td>(f = 1 , kHz)</td>
<td>(0^\circ C) to (125^\circ C)</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>(I_O = 5 , mA)</td>
<td>(0^\circ C) to (125^\circ C)</td>
<td>–1</td>
<td></td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>(f = 10 , Hz) to (100 , kHz)</td>
<td>(25^\circ C)</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>(I_O = 1 , A)</td>
<td>(25^\circ C)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bias current</td>
<td>(25^\circ C)</td>
<td>4.3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bias current change</td>
<td>(V_I = 12.5 , V) to (28 , V)</td>
<td>(0^\circ C) to (125^\circ C)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_O = 5 , mA) to (1 , A)</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td>(25^\circ C)</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak output current</td>
<td>(25^\circ C)</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, \(V_I = 19 \, V, I_O = 500 \, mA \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(T_J \uparrow)</th>
<th>(\mu A7812C)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>(I_O = 5 , mA) to (1 , A,) (V_I = 14.5 , V) to (27 , V,) (P_D \leq 15 , W)</td>
<td>(25^\circ C)</td>
<td>11.5</td>
<td>12</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>(V_I = 14.5 , V) to (30 , V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_I = 16 , V) to (22 , V)</td>
<td>(25^\circ C)</td>
<td>10</td>
<td>240</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>(V_I = 15 , V) to (25 , V,) (f = 120 , Hz)</td>
<td>(0^\circ C) to (125^\circ C)</td>
<td>55</td>
<td>71</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>(I_O = 5 , mA) to (1.5 , A)</td>
<td>(25^\circ C)</td>
<td>12</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>(I_O = 250 , mA) to (750 , mA)</td>
<td></td>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>Output resistance</td>
<td>(f = 1 , kHz)</td>
<td>(0^\circ C) to (125^\circ C)</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>(I_O = 5 , mA)</td>
<td>(0^\circ C) to (125^\circ C)</td>
<td>–1</td>
<td></td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>(f = 10 , Hz) to (100 , kHz)</td>
<td>(25^\circ C)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>(I_O = 1 , A)</td>
<td>(25^\circ C)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bias current</td>
<td>(25^\circ C)</td>
<td>4.3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bias current change</td>
<td>(V_I = 14.5 , V) to (30 , V)</td>
<td>(0^\circ C) to (125^\circ C)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_O = 5 , mA) to (1 , A)</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td>(25^\circ C)</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak output current</td>
<td>(25^\circ C)</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.
electrical characteristics at specified virtual junction temperature, $V_I = 23$ V, $I_O = 500$ mA (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>$T_J \uparrow$</th>
<th>μA7815C</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
</tr>
<tr>
<td>Output voltage</td>
<td>$I_O = 5$ mA to 1 A, $V_I = 17.5$ V to 30 V, $P_D \leq 15$ W</td>
<td>25°C</td>
<td>14.4</td>
<td>15</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>$V_I = 17.5$ V to 30 V</td>
<td>25°C</td>
<td>11</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>$V_I = 20$ V to 26 V</td>
<td></td>
<td>3</td>
<td>150</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>$V_I = 18.5$ V to 28.5 V, $f = 120$ Hz</td>
<td>0°C to 125°C</td>
<td>54</td>
<td>70</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>$I_O = 5$ mA to 1.5 A</td>
<td>25°C</td>
<td>12</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>$I_O = 250$ mA to 750 mA</td>
<td></td>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td>Output resistance</td>
<td>$f = 1$ kHz</td>
<td>0°C to 125°C</td>
<td>0.019</td>
<td>W</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>$I_O = 5$ mA</td>
<td>0°C to 125°C</td>
<td>–1</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>$f = 10$ Hz to 100 kHz</td>
<td>25°C</td>
<td>90</td>
<td>µV</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>$I_O = 1$ A</td>
<td>25°C</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Bias current</td>
<td>25°C</td>
<td>4.4</td>
<td>8</td>
<td>mA</td>
</tr>
<tr>
<td>Bias current change</td>
<td>$V_I = 17.5$ V to 30 V</td>
<td>0°C to 125°C</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$I_O = 5$ mA to 1 A</td>
<td></td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td>25°C</td>
<td>230</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Peak output current</td>
<td>25°C</td>
<td>2.1</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = 27$ V, $I_O = 500$ mA (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>$T_J \uparrow$</th>
<th>μA7818C</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
</tr>
<tr>
<td>Output voltage</td>
<td>$I_O = 5$ mA to 1 A, $P_D \leq 15$ W</td>
<td>25°C</td>
<td>17.3</td>
<td>18</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>$V_I = 21$ V to 33 V</td>
<td>25°C</td>
<td>15</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>$V_I = 24$ V to 30 V</td>
<td></td>
<td>5</td>
<td>180</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>$V_I = 22$ V to 32 V, $f = 120$ Hz</td>
<td>0°C to 125°C</td>
<td>53</td>
<td>69</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>$I_O = 5$ mA to 1.5 A</td>
<td>25°C</td>
<td>12</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>$I_O = 250$ mA to 750 mA</td>
<td></td>
<td>4</td>
<td>180</td>
</tr>
<tr>
<td>Output resistance</td>
<td>$f = 1$ kHz</td>
<td>0°C to 125°C</td>
<td>0.022</td>
<td>W</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>$I_O = 5$ mA</td>
<td>0°C to 125°C</td>
<td>–1</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>$f = 10$ Hz to 100 kHz</td>
<td>25°C</td>
<td>110</td>
<td>µV</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>$I_O = 1$ A</td>
<td>25°C</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Bias current</td>
<td>25°C</td>
<td>4.5</td>
<td>8</td>
<td>mA</td>
</tr>
<tr>
<td>Bias current change</td>
<td>$V_I = 21$ V to 33 V</td>
<td>0°C to 125°C</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$I_O = 5$ mA to 1 A</td>
<td></td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td>25°C</td>
<td>200</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Peak output current</td>
<td>25°C</td>
<td>2.1</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.
electrical characteristics at specified virtual junction temperature, $V_I = 33\, V$, $I_O = 500\, mA$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_J^\dagger</th>
<th>μA7824C</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>$I_O = 5, mA$ to $1, A$, $V_I = 27, V$ to $38, V$, $P_D \leq 15, W$</td>
<td>$25^\circ C$</td>
<td>23 24 25</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>$V_I = 27, V$ to $38, V$</td>
<td>$25^\circ C$</td>
<td>18 480</td>
<td>mV</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>$V_I = 28, V$ to $38, V$, $f = 120, Hz$</td>
<td>$0^\circ C$ to $125^\circ C$</td>
<td>50 66 66</td>
<td>dB</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>$I_O = 5, mA$ to $1.5, A$</td>
<td>$25^\circ C$</td>
<td>12 480</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$I_O = 250, mA$ to $750, mA$</td>
<td></td>
<td>4 240</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>$f = 1, kHz$</td>
<td>$0^\circ C$ to $125^\circ C$</td>
<td>0.028</td>
<td>W</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>$I_O = 5, mA$</td>
<td>$0^\circ C$ to $125^\circ C$</td>
<td>−1.5</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>$f = 10, Hz$ to $100, kHz$</td>
<td>$25^\circ C$</td>
<td>170</td>
<td>μV</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>$I_O = 1, A$</td>
<td>$25^\circ C$</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Bias current</td>
<td>$f = 1, kHz$</td>
<td>$25^\circ C$</td>
<td>4.6 8</td>
<td>mA</td>
</tr>
<tr>
<td>Bias current change</td>
<td>$V_I = 27, V$ to $38, V$</td>
<td>$0^\circ C$ to $125^\circ C$</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$I_O = 5, mA$ to $1, A$</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td>$V_I = 27, V$ to $38, V$</td>
<td>$0^\circ C$ to $125^\circ C$</td>
<td>1</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$I_O = 5, mA$ to $1, A$</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Peak output current</td>
<td>$25^\circ C$</td>
<td></td>
<td>150</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$25^\circ C$</td>
<td></td>
<td>2.1</td>
<td>A</td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = 10\, V$, $I_O = 500\, mA$, $T_J = 25^\circ C$ (unless otherwise noted)†

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>μA7805Y</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>$V_I = 7, V$ to $25, V$</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>$V_I = 8, V$ to $12, V$</td>
<td>3</td>
<td>mV</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>$V_I = 8, V$ to $18, V$, $f = 120, Hz$</td>
<td>78</td>
<td>dB</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>$I_O = 5, mA$ to $1.5, A$</td>
<td>15</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$I_O = 250, mA$ to $750, mA$</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>$f = 1, kHz$</td>
<td>0.017</td>
<td>W</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>$I_O = 5, mA$</td>
<td>−1.1</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>$f = 10, Hz$ to $100, kHz$</td>
<td>40</td>
<td>μV</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>$I_O = 1, A$</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Bias current</td>
<td>$I_O = 1, A$</td>
<td>4.2</td>
<td>mA</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td>$I_O = 5, mA$</td>
<td>750</td>
<td>mA</td>
</tr>
<tr>
<td>Peak output current</td>
<td>$25^\circ C$</td>
<td>2.2</td>
<td>A</td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.
electrical characteristics at specified virtual junction temperature, $V_I = 11$ V, $I_O = 500$ mA, $T_J = 25^\circ$C (unless otherwise noted)†

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>μA7806Y</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>$V_I = 8$ V to 25 V</td>
<td>5</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$V_I = 9$ V to 13 V</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>$V_I = 9$ V to 19 V, $f = 120$ Hz</td>
<td>75</td>
<td>dB</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>$I_O = 5$ mA to 1.5 A</td>
<td>14</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$I_O = 250$ mA to 750 mA</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>$f = 1$ kHz</td>
<td>0.019</td>
<td>W</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>$I_O = 5$ mA</td>
<td>−0.8</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>$f = 10$ Hz to 100 kHz</td>
<td>45</td>
<td>µV</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>$I_O = 1$ A</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>4.3</td>
<td>mA</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>550</td>
<td>mA</td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>2.2</td>
<td>A</td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = 14$ V, $I_O = 500$ mA, $T_J = 25^\circ$C (unless otherwise noted)†

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>μA7808Y</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td>8</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>$V_I = 10.5$ V to 25 V</td>
<td>6</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$V_I = 11$ V to 17 V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>$V_I = 11.5$ V to 21.5 V, $f = 120$ Hz</td>
<td>72</td>
<td>dB</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>$I_O = 5$ mA to 1.5 A</td>
<td>12</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$I_O = 250$ mA to 750 mA</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>$f = 1$ kHz</td>
<td>0.016</td>
<td>W</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>$I_O = 5$ mA</td>
<td>−0.8</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>$f = 10$ Hz to 100 kHz</td>
<td>52</td>
<td>µV</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>$I_O = 1$ A</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>4.3</td>
<td>mA</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>450</td>
<td>mA</td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>2.2</td>
<td>A</td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.
electrical characteristics at specified virtual junction temperature, \(V_I = 15 \, \text{V}, I_O = 500 \, \text{mA}, T_J = 25^\circ \text{C} \) (unless otherwise noted)†

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(\mu \text{A7885Y})</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>(V_I = 10.5 , \text{V}) to 25 , \text{V}</td>
<td>8.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_I = 11 , \text{V}) to 17 , \text{V}</td>
<td>6</td>
<td>mV</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>(V_I = 11.5 , \text{V}) to 21.5 , \text{V}, f = 120 , \text{Hz}</td>
<td>2</td>
<td>mV</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>(I_O = 5 , \text{mA}) to 1.5 , \text{A}</td>
<td>12</td>
<td>mV</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>(I_O = 250 , \text{mA}) to 750 , \text{mA}</td>
<td>4</td>
<td>mV</td>
</tr>
<tr>
<td>Output resistance</td>
<td>(f = 1 , \text{kHz})</td>
<td>0.016</td>
<td>W</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>(I_O = 5 , \text{mA})</td>
<td>-0.8</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>(f = 10 , \text{Hz}) to 100 , \text{kHz}</td>
<td>55</td>
<td>μV</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>(I_O = 1 , \text{A})</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>4.3</td>
<td>mA</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>450</td>
<td>mA</td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>2.2</td>
<td>A</td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, \(V_I = 17 \, \text{V}, I_O = 500 \, \text{mA}, T_J = 25^\circ \text{C} \) (unless otherwise noted)†

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(\mu \text{A7810Y})</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>(V_I = 12.5 , \text{V}) to 28 , \text{V}</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_I = 14 , \text{V}) to 20 , \text{V}</td>
<td>7</td>
<td>mV</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>(V_I = 13 , \text{V}) to 23 , \text{V}, f = 120 , \text{Hz}</td>
<td>2</td>
<td>mV</td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>(I_O = 5 , \text{mA}) to 1.5 , \text{A}</td>
<td>12</td>
<td>mV</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>(I_O = 250 , \text{mA}) to 750 , \text{mA}</td>
<td>4</td>
<td>mV</td>
</tr>
<tr>
<td>Output resistance</td>
<td>(f = 1 , \text{kHz})</td>
<td>0.018</td>
<td>W</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>(I_O = 5 , \text{mA})</td>
<td>-1</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>(f = 10 , \text{Hz}) to 100 , \text{kHz}</td>
<td>70</td>
<td>μV</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>(I_O = 1 , \text{A})</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>4.3</td>
<td>mA</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>400</td>
<td>mA</td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>2.2</td>
<td>A</td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.
electrical characteristics at specified virtual junction temperature, $V_I = 19 \, V$, $I_O = 500 \, mA$, $T_J = 25^\circ C$ (unless otherwise noted)†

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>μA7812Y</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>$V_I = 14.5 , V$ to $30 , V$</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_I = 16 , V$ to $22 , V$</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>$V_I = 15 , V$ to $25 , V$, $f = 120 , Hz$</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>$I_O = 5 , mA$ to $1.5 , A$</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_O = 250 , mA$ to $750 , mA$</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>$f = 1 , kHz$</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>$I_O = 5 , mA$</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>$f = 10 , Hz$ to $100 , kHz$</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>$I_O = 1 , A$</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a $0.33-\mu F$ capacitor across the input and a $0.1-\mu F$ capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = 23 \, V$, $I_O = 500 \, mA$, $T_J = 25^\circ C$ (unless otherwise noted)†

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>μA7815Y</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>$V_I = 17.5 , V$ to $30 , V$</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_I = 20 , V$ to $26 , V$</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>$V_I = 18.5 , V$ to $28.5 , V$, $f = 120 , Hz$</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>$I_O = 5 , mA$ to $1.5 , A$</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_O = 250 , mA$ to $750 , mA$</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>$f = 1 , kHz$</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>$I_O = 5 , mA$</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>$f = 10 , Hz$ to $100 , kHz$</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>$I_O = 1 , A$</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>2.1</td>
<td></td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a $0.33-\mu F$ capacitor across the input and a $0.1-\mu F$ capacitor across the output.
\(\mu \)A7818Y

Electrical Characteristics at Specified Virtual Junction Temperature, \(V_I = 27 \text{ V}, I_O = 500 \text{ mA}, T_J = 25^\circ \text{C} \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(\mu)A7818Y</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td></td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>(V_I = 21 \text{ V}) to (33 \text{ V})</td>
<td>15</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>(V_I = 24 \text{ V}) to (30 \text{ V})</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>(V_I = 22 \text{ V}) to (32 \text{ V}), (f = 120 \text{ Hz})</td>
<td>69</td>
<td>dB</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>(I_O = 5 \text{ mA}) to (1.5 \text{ A})</td>
<td>12</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>(I_O = 250 \text{ mA}) to (750 \text{ mA})</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>(f = 1 \text{ kHz})</td>
<td>0.022</td>
<td>W</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>(I_O = 5 \text{ mA})</td>
<td>–1</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>(f = 10 \text{ Hz}) to (100 \text{ kHz})</td>
<td>110</td>
<td>μV</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>(I_O = 1 \text{ A})</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>4.5</td>
<td>mA</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>2.1</td>
<td>A</td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

\(\mu \)A7824Y

Electrical Characteristics at Specified Virtual Junction Temperature, \(V_I = 33 \text{ V}, I_O = 500 \text{ mA}, T_J = 25^\circ \text{C} \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>(\mu)A7824Y</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td></td>
<td>24</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage regulation</td>
<td>(V_I = 27 \text{ V}) to (38 \text{ V})</td>
<td>18</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>(V_I = 30 \text{ V}) to (36 \text{ V})</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Ripple rejection</td>
<td>(V_I = 28 \text{ V}) to (38 \text{ V}), (f = 120 \text{ Hz})</td>
<td>66</td>
<td>dB</td>
</tr>
<tr>
<td>Output voltage regulation</td>
<td>(I_O = 5 \text{ mA}) to (1.5 \text{ A})</td>
<td>12</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>(I_O = 250 \text{ mA}) to (750 \text{ mA})</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Output resistance</td>
<td>(f = 1 \text{ kHz})</td>
<td>0.028</td>
<td>W</td>
</tr>
<tr>
<td>Temperature coefficient of output voltage</td>
<td>(I_O = 5 \text{ mA})</td>
<td>–1.5</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>(f = 10 \text{ Hz}) to (100 \text{ kHz})</td>
<td>170</td>
<td>μV</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>(I_O = 1 \text{ A})</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Bias current</td>
<td></td>
<td>4.6</td>
<td>mA</td>
</tr>
<tr>
<td>Short-circuit output current</td>
<td></td>
<td>150</td>
<td>mA</td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td>2.1</td>
<td>A</td>
</tr>
</tbody>
</table>

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.
APPLICATION INFORMATION

Figure 1. Fixed-Output Regulator

Figure 2. Positive Regulator in Negative Configuration (V_I Must Float)

NOTE A: The following formula is used when V_{xx} is the nominal output voltage (output to common) of the fixed regulator:

\[V_O = V_{xx} + \left(\frac{V_{xx}}{R_T} + I_O \right) R_2 \]

Figure 3. Adjustable-Output Regulator

I_O = \left(\frac{V_O}{R_1} \right) + I_O \text{ Bias Current}

Figure 4. Current Regulator
operation with a load common to a voltage of opposite polarity

In many cases, a regulator powers a load that is not connected to ground but, instead, is connected to a voltage source of opposite polarity (e.g., operational amplifiers, level-shifting circuits, etc.). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 6. This protects the regulator from output polarity reversals during startup and short-circuit operation.

reverse-bias protection

Occasionally, the input voltage to the regulator can collapse faster than the output voltage. This can occur, for example, when the input supply is crowbarred during an output overvoltage condition. If the output voltage is greater than approximately 7 V, the emitter-base junction of the series-pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be used as shown in Figure 7.
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated
This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.